When is a crystal graph not crystallographic?

Olaf Delgado-Friedrichs

Order!Order? — Canberra 4 Dec 2019
Answer: when it has “too much symmetry”.

More precisely: when its automorphism group is not a crystallographic space group.

(Crystallographic nets and their quotient graphs, W. E. Klee 2004.)
A crystalline material. What might be its atomic structure?
X-ray crystallography produces something like this.
Adding bonds (or ligands) yields a periodic graph or *net*.
We can discover further structure in this graph . . .
When is a crystal graph not crystallographic?

Olaf Delgado

Too much symmetry

Crystal nets

Crystallographic groups

Tutte's barycentric embedding

Unstable nets

Automorphisms to isometries

Periodicity fine print

Thanks

... which could lead us into the hyperbolic plane ...
When is a crystal graph not crystallographic?

Olaf Delgado

Too much symmetry

Crystal nets

Crystallographic groups

Tutte’s barycentric embedding

Unstable nets

Automorphisms to isometries

Periodicity fine print

Thanks

... or towards a complete partitioning of space.
A *net* is a (3-) connected, locally finite periodic graph.
A net is a (3-) connected, locally finite periodic graph.
A net is a (3-) connected, locally finite periodic graph.
A *net* is a (3-) connected, locally finite periodic graph.
When is a crystal graph not crystallographic?

Olaf Delgado

Too much symmetry

Crystal nets

Crystallographic groups

Tutte’s barycentric embedding

Unstable nets

Automorphisms to isometries

Periodicity fine print

Thanks

A 2-dimensional net, which happens to be planar.
A 2-dimensional net, which happens to be planar.
When is a crystal graph not crystallographic?

Olaf Delgado

Too much symmetry

Crystal nets

Crystallographic groups

Tutte’s barycentric embedding

Unstable nets

Automorphisms to isometries

Periodicity fine print

Thanks

A 2-dimensional net, which happens to be planar.
A 2-dimensional net, which happens to be planar.
When is a crystal graph not crystallographic?

Olaf Delgado

Too much symmetry
Crystal nets
Crystallographic groups
Tutte’s barycentric embedding
Unstable nets
Automorphisms to isometries
Periodicity fine print
Thanks

A 2-dimensional net, which happens to be planar.
A *crystallographic (space) group* is a discrete group of motions in euclidean space with a bounded fundamental domain.

Crystallographic groups are just the ones that generate unbounded, discrete footprint patterns.
Tutte’s idea for drawing graphs “nicely”:

Place a vertex v in the \textit{barycenter} of its neighbors:

$$\sum_{w \in \text{Neighbors}(v)} \text{position}(w) - \text{position}(v) = 0$$
For finite graphs, prescribe a convex outer face.

For polyhedral graphs, this ensures convex drawings. *(How to draw a graph, W. T. Tutte 1963.)*
For periodic graphs, prescribe a vertex lattice.

The solution is then unique, so all periodic barycentric placements are the same up to affine transformations.
An *unstable* net is one with colliding barycentric vertex positions.

Two non-crystallographic and one crystallographic net, all unstable.

But can non-crystallographic nets be stable?
If \(p: G \to \mathbb{R}^n \) is barycentric and \(\varphi: G \to G \) an automorphism, then \(p \circ \varphi \) is also barycentric.

Define affine map \(\alpha_\varphi: \mathbb{R}^n \to \mathbb{R}^n \) with \(\alpha_\varphi(p(v_i)) = p(\varphi(v_i)) \) for just enough vertices \(v_i \in V(G) \) to make it unique.

If \(p \) and \(p \circ \varphi \) are periodic, then \(\alpha_\varphi \circ p = p \circ \varphi \) everywhere.
Because we have finitely many edge lattices, there can up to translations only be finitely many such α_φ.

By a standard trick (averaging the inner product), we can turn them all into rigid motions, a.k.a. isometries.

Thus $\varphi \mapsto \alpha_\varphi$ defines a group homomorphism that maps $\text{Aut}(G)$ onto a crystallographic group.

If G is stable, the kernel must be trivial.
How could p be periodic, but not $p \circ \varphi$?

For an abstract graph G, we must explicitly pick a translation group $T \leq \text{Aut}(G)$.

If G is not crystallographic, T is not unique and we can have $\varphi T \varphi^{-1} \neq T$.

But p was only constructed to be periodic with respect to T, not necessarily $\varphi T \varphi^{-1}$.
Possible ways forward:

– Show uniqueness of barycentric placements under weaker conditions.

– Construct the homomorphism onto a crystallographic group without requiring α_φ to be a global match.

– Learn more about the structure of non-crystallographic nets (c.f. work by Eon and Moreira de Oliveira).
That’s all folks!

Further reading:

Slides:
http://gavrog.org/order-order.pdf