DATA STRUCTURES AND ALGORITHMS FOR TILINGS 1.

OLAF DELGADO-FRIEDRICHS

ABSTRACT. Based on the mathematical theory of Delaney symbols, data struc-
tures and algorithms are presented for the analysis and manipulation of gen-
eralized periodic tilings in arbitrary dimensions.

1. INTRODUCTION

A periodic tiling is a subdivision of a plane or a higher-dimensional space into
closed bounded regions called tiles without holes in such a way that the whole
configuration can be reproduced from a finite assembly of tiles by repeatedly shifting
and copying in as many directions as needed (c.f. [GS87]).

For the purpose of classification, mathematicians have invented a variety of sym-
bolic descriptions for periodic tilings [Hee68, DDS80, GS81]. Likewise, computer
scientist have developed data structures and programs for storing and manipulating
tilings [Cho80]. Most of these, however, have been restricted to a rather limited
range of applications.

The invention of Delaney symbols has not only provided a mathematical tool for
a much more systematic way of studying the combinatorial structure of tilings, thus
initiating what we call combinatorial tiling theory (cf. [Dre85, Dre87, DH87, Hus93,
MP94, MPS97, DDH™99, Del01]). Delaney symbols also form the basis for concise
and efficient data structures and algorithms in what might be called computational
tiling theory.

This article is the first in a projected series of four publications on algorithmic
aspects of Delaney symbol theory. I will shortly review the mathematical concept
of Delaney symbols and present and analyze some basic algorithms. In forthcoming
articles, I will address the relationship between Delaney symbols and tilings in more
detail and present methods for enumerating tilings.

As a teaser, please look at the two tilings shown in Figure 1, which were brought
to the attention of our group by L. Collatz. They seem to be very similar in their
combinatorial structure, but are they actually equivariantly equivalent, i.e., can the
first be deformed into the second without breaking symmetries? This is very hard
to solve without the proper tools, but becomes very easy with Delaney symbols.

2. DELANEY SYMBOLS

After introducing Delaney symbols by describing their construction for a two-
dimensional tiling, I will give a general characterization and review some of the
most important mathematical results.

Date: 14th May 2004.
Submitted to Theoretical Computer Science.

1

2 OLAF DELGADO-FRIEDRICHS

FIGURE 2. A tiling with its barycentric subdivision

Please note that in the following, the edges and vertices of a tiling will be defined
in a purely combinatorial way. Thus, in Dimension 2, a vertex is a point where at
least three tiles meet. An edge is a portion of the common boundary of two tiles
in between two vertices.

A barycentric subdivision is of a given tiling is constructed as follows:

e Choose a point in the interior of each edge and each tile.
e For each tile, connect the point chosen in its interior with its vertices and
all the points chosen on its edges by pairwise disjoint arcs.

Ideally, the barycentric subdivision should be constructed as to retain the sym-
metry of the tiling. This is always possible. In Figure 2, a small portion of a tiling
is shown together with its barycentric subdivision.

Obviously, the barycentric subdivision is a triangulation. To avoid confusion, we
will refer to its tiles as chambers. Each chamber has three types of vertices, namely
one original vertex, one on an edge and one inside a tile. We label these ‘0’, ‘1’ and

DATA STRUCTURES AND ALGORITHMS FOR TILINGS I 3

|3/'5 F3/5 |
2 2
3/5 °—| 3/5 |
2
35 3/5
5 \\0 //0 2
165 |5 [38/5 {3/
1 0\\ y
.............. 6/5

FIGURE 3. Chamber classes and the Delaney symbol.

‘2’, accordingly. There are also three types of edges. Edges are labelled the same as
the vertices opposite to them. In Figure 2, edges labelled ‘0’, ‘1’ and ‘2’ are shown
dashed, dotted and solid, respectively.

Each chamber has three neighbors, which are distinguished by the type of edge
they share with it. Thus, any finite portion of the triangulation can be described
completely by listing for each chamber its three neighbors in order. For a given
chamber ¢, we will denote these by so(t), s1(t) and sa(t), respectively.

Next, we take symmetries into account. Two chambers are called symmetry
equivalent if there is a symmetry of the tiling mapping one onto the other. In
Figure 3, equivalent chambers are marked with a common letter. Clearly, there are
10 classes in this particular case, which bear the labels ‘A’ up to ‘J’.

As corresponding neighbors of chambers in the same class belong to the same
class again, we can assign to each class C its three “neighboring” classes so(C),
51(C) and s2(C), respectively, where the class s;(C) consist of all the neighbors
si(t) of chambers ¢ in class C. The set of classes together with its neighborhood
relations is called the Delaney set!. It is convenient to envision the classes as nodes
and the neighborhood relations as labelled edges of a graph. Consequently, the
term Delaney graph is used as well. Note that the edges of the Delaney graph are
undirected, because the neighborhood relations are reflective. Of course, the set of
chambers of the barycentric subdivision can be regarded as a — possibly infinite
— graph in the same way, which we will call the chamber graph.

It is always possible to choose a connected region containing one chamber of
each type, as shown in gray in Figure 3. Such a region forms a particular funda-
mental domain for the tiling’s symmetry group. A convenient way to explore the
Delaney graph is to look at a fundamental domain together with its immedatiately
surrounding chambers.

Clearly, the Delaney graph alone does not uniquely determine the tiling. This
becomes obvious when we consider the archimedean solid, or spherical tiling, de-
picted in Figure 4, which has exactly the same Delaney graph as our plane example,
but contains squares instead of regular hexagons.

INamed after M.S. Delaney, who’s work [Del80] inspired the invention of Delaney symbols.

4 OLAF DELGADO-FRIEDRICHS

FIGURE 4. An archimedean solid.

We augment the Delaney graph by assigning to each class C' of chambers the two
numbers mo(C) and m1(C). The first of these gives the degree, i.e., the number
of vertices, of the tiles containing chambers of this class, while the second gives
the degree of the vertices adjacent to chambers of this class. By construction,
neither of these numbers depends on the actual chamber chosen, so they are “well-
defined”. The augmented Delaney graph is called the Delaney symbol of the tiling
in question. The Delaney symbol for the tiling in Figure 2 is shown as a labelled
graph in Figure 3 to the right. The Delaney symbol for the archimedean solid of
Figure 4, as a matter of fact, can be obtained by setting both mg(A) and mq(B)
to 4 instead of 6.

Delaney symbols are insensitive to deformations of tilings as long as these change
neither the topology nor the symmetries. More precisely, two tilings are topologically
equivalent if there is a homeomorphism — a both-ways continuous transformation
— mapping tiles of the first onto tiles of the second. They are equivariantly equiv-
alent if there is such a transformation which in addition maps (by conjugation) the
symmetry group of the first to the symmetry group of the second. By construction,
Delaney symbols are invariants of combinatorial equivalence classes. The first and
most important theorem reviewed here states that they are even sharp invariants.

Theorem 1 ([Dre85]). Two tilings are equivariantly equivalent if and only if their
respective Delaney symbols are isomorphic.

Two Delaney symbols are isomorphic if one can be obtained from the other just
by renaming the nodes. This can be efficiently tested, as will be demonstrated
below.

Theorem 1 remains true in higher dimensions, where the construction of the
Delaney symbol is performed in an analoguous way. In fact, it holds true whenever
both spaces tiled are simply connected manifolds. A manifold, essentially, is a space
that locally looks like an ordinary euclidean space everywhere, whereas a space is
simply connected if every closed curve in it can be continuously deformed into a
single point without leaving the space. An example of a manifold which is not
simply connected is the surface of a doughnut, also called a torus.

Following is a characterization of “formal” Delaney symbols in arbitrary dimen-
sion, using those properties which are immediate from the construction.

DATA STRUCTURES AND ALGORITHMS FOR TILINGS I 5

Definition 2. A Delaney symbol of dimension n is a set C together with functions
$0,...,8, from C into C and functions mq,...,m,_1 from C into the positive
integers, such that the following is true for all C' € C and all applicable i and j:

(DS0) The underlying Delaney graph is connected, i.e., each element
can be mapped onto any other by repeatedly applying func-
tions from the set sq, ..., s,.

(DS1) si(s:(C)) = C.

(DS2) si(s;(C)) = s;(s:(C)) whenever j > i+ 1.

(DS3) mi(C) = mi(s:(C)) = mi(si+1(C)).
(Ds4) (0 =,

where f2(C) := C and fF(C) := s;(si11(fF(C))).

For practical reasons, we will usually assume that Delaney symbols are finite. We
will therefore restrict our attention to tilings which possess finite Delaney symbols,
as periodic tilings do. We will refer to these as generalized periodic tilings. Among
the generalized periodic tilings are tilings of spheres and also certain tilings of
hyperbolic spaces.

The following notations will be useful:

Definition 3. Let C be an n-dimensional Delaney symbol. For C' € C and 0 <
i < j <n, define r; j(C) as the smallest positive number r such that f/;(C) = C,
where f2;(C) = C and ff;l(C) = s;(s5(f](C))) Define v; ;(C) as the fraction

m;(C)/ri;(C)if j =i+ 1 and as 2/r; ;(C) otherwise.

Every face, i.e., in the two-dimensional case, every vertex, edge and tile, of a
tiling is represented by a unique vertex of its barycentric subdivision. This vertex
is labelled 4 if it lies in an i-dimensional face. Two chambers ¢ and ¢’ share a
common i-vertex if and only if they lie in the same connected component of the
graph obtained by removing all i-edges from the chamber graph. These are exactly
those chambers which have a non-empty intersection with the given face. This
relationship carries over to the Delaney symbol, where symmetry equivalence classes
of i-faces are represented by connected components of the partial Delaney graph
obtained by removing all i-edges.

These connected components are an important tool in combinatorial tiling the-
ory, especially in dimensions 3 and higher. Together with the relevant ‘m’-functions,
we refer to them as subsymbols. An I-subsymbol of an n-dimensional Delaney sym-
bol C is defined by an element C € C and a subset I C {0,...,n}. It consists
of all elements of C which can be reached from C by repeatedly applying only
functions s; with ¢ € I. A {0,...,n — 1}-subsymbol, for example, represents the
combinatorial structure of a tile.

The Delaney symbol in Figure 3 contains the three {0, 1}-subsymbols {A, B},
{C,D,E,F,G,H} and {I, J}.

Next, we consider how to determine whether a given formal Delaney symbol
actually is derived from a tiling of, say, the euclidean plane. In dimension 2, this
can be done using a simple numerical invariant:

Definition 4. Let C be a two-dimensional Delaney symbol. The curvature of C
is defined as the sum

K(C):= > k()

CceC

6 OLAF DELGADO-FRIEDRICHS

where
1 1 1

mo(C) T mi(C) 2

Theorem 5. Let C be a two-dimensional Delaney symbol. Then C encodes a tiling

of

k(C) =

e the hyperbolic plane if and only if K(C) < 0,
e the euclidean plane if and only if K(C) =0,
e the sphere if and only if K(C) > 0 and for alli,j € {0,1,2} and all C € C,

the quantity
4

vi;(C) - K(C)
s a natural number,
e no tiling at all otherwise.

To illustrate this, for the Delaney symbol in Figure 3, we have

1 1 1 5+6-15 —4
KA) =k(B)= -+~ — 2 =27 =

6 5 2 30 30
and 1 1 1 10+6-15 1
| —
HO = =hD=345" 5= "3 ~a
thus ()
2. (—4)+8-1
K(C) = =
(C) 30 0,

whereas for the Delaney symbol of the archimedean solid shown in Figure 4, we
have

11 1 5+4-10 -1 -3
MA) =hB) =t 53" "2 ~ 20 &
thus
2. (— -2 1 1
K(c):(g’)—+8 70:,>0.

60 60 6
Moreover, we have 4/K(C) = 24, which implies that v; ;(C) must divide 24 for all
applicable C, ¢ and j. This is indeed the case.

Unfortunately, there is no complete, easily accessible proof of Theorem 5 avail-
able from the literature. A complete, but rather involved proof is contained in
[Bal90]. A proof for the Euclidean case based on ideas by Dress appears in [Hus89].
There is a rather neat constructive proof easily following from [Hus93] together with
some well-established facts on two-dimensional orbifolds (also called space-forms)
[Vin93]. This material is somewhat beyond the scope of this article, though, and
thus will appear in a forthcoming publication.

Here, T will only shortly indicate why the conditions stated for the spherical
case are necessary. It is easy to see that for the chamber graph Cg of a spherical
tiling, the number K (Cy) is just twice ' — E + V, where F, E and V are the
numbers of tiles, edges and vertices of that tiling, respectively. Indeed, this is true
for any tiling of a closed surface. By Euler’s well-known theorem on polyhedra,
it follows that K(Cp) = 2-2 = 4. Now the size n of each chamber class must
coincide with the size of the symmetry group and two chambers in the same class
must have the same k-value. Consequently, for the Delaney symbol C of the same
tiling, 4 = K(Cyp) = n- K(C), which implies n = 4/K(C) and K(C) =4/n > 0. It
is, furthermore, obvious from the definitions that a value of v; ;(C') larger than 1

DATA STRUCTURES AND ALGORITHMS FOR TILINGS I 7

A A AA. A A AlA
A Ala~i A B B|B B
A AlA A B BB B
AiA A A A A AiA
AlA ALA - AlA AlA
A AlA™ A B B|B B
A AlA A B B|B B
AlA AA) AlA AlA

FiGURE 5. Two topologically, but not equivariantly equivalent tilings.

indicates a rotation of that order fixing the vertex — or, in general, the face of co-
dimension 2 — of any chamber in class C' at the intersection of its two co-dimension
1 faces labelled ¢ and j. The order of such a rotation must divide the size of the
symmetry group, i.e., 4/(K(C) - v; ;(C)) must be a natural number.

Theorem 5 relies on the Euler characteristic of surfaces. Since the Fuler char-
acteristic is always 0 in odd dimensions, no analogous result is available for three-
dimensional Delaney symbols. In [Del01], a partial algorithm is described for the
recognition of Delaney symbols of three-dimensional tilings.

To complete this section, let us consider tilings which are topologically, but
not equivariantly equivalent. Figure 5 shows a simple tiling by squares and a
topologically equivalent one by rectangles, both with barycentric subdivisions and
letters marking respective chamber classes. In the rectangle tiling, the reflections
at the diagonals are no longer symmetries of the tiling, so its Delaney symbol has
two elements instead of just one in the case of the square tiling.

The rectangle tiling is called a symmetry breaking of the square tiling. There is
a homeomorphism which maps tiles of the rectangle tiling onto tiles of the square
tiling and symmetries of the rectangle tiling to symmetries of the square tiling, but
not all symmetries of the square tiling are obtained in this way. Such a homeomor-
phism also takes chambers and chamber classes of the first tiling onto chambers
and chamber classes of the second one, thereby inducing a well-behaved mapping
between their Delaney symbols, which we call a Delaney map or just a map.

Definition 6. A function f: C — C’ between Delaney symbols C and C’ is called
a Delaney map if and only if for each C' € C and for all applicable i:

e f(si(C)) = s(f(C))

o m;(f(C)) =mi(C).
A Delaney map is called an isomorphism if it is one-to-one. A Delaney symbol is
called minimal if every Delaney map defined on it is an isomorphism.

Every isomorphism has a reverse map which is a Delaney map, which justifies
its name. For finite Delaney symbols, a Delaney map is an isomorphism if both
symbols have the same size. A finite Delaney symbol is minimal if it can not be
mapped onto a smaller one.

If f: C — C'is a Delaney map and C’ is the Delaney symbol of a tiling, then C
is the Delaney symbol of a symmetry breaking of that tiling. If C corresponds to
some tiling, then a tiling corresponding to C’ would have to have more symmetries,
which might not always be possible. It has been shown, however, that for all C

8 OLAF DELGADO-FRIEDRICHS

corresponding to either a two-dimensional or a euclidean three-dimensional tiling,
C’ will correspond to a tiling in the same geometry [Del01].

As will be shown in the next section, there is for every Delaney symbol a unique
minimal image, which can be computed efficiently. This means that, at least for two-
dimensional and euclidean three-dimensional tilings, every topological equivalence
class has a unique representative with maximal symmetry.

3. ALGORITHMS

In this section, I will present algorithms for finding subsymbols, for testing
whether two Delaney symbols are isomorphic and for determining the minimal
image of a Delaney symbol. Instead of pseudocode, I will use the programming
language Python created by G. van Rossum (c.f. [Pyt00, Bea99]). This has the
advantage that the code shown can actually be run, although it looks almost like
pseudocode. A complete working demo program containing the code shown below
can be obtained from the author’s website as

http://www.mathematik.uni-bielefeld.de/ delgado/TCS/code.py

Note that lists in Python are indexed starting at 0. Negative indices count
backwards, i.e., a[-1] is equivalent to a[len(a)-1], which is the last entry of
a. The command del a[i] removes a particular entry. Python’s range function
produces a list of consecutive integers. In particular, range (n) produces a list with
first entry 0 and last entry n—1. As in C, the double equal sign == tests for equality,
while the single equal sign = is used for assignment.

A Delaney symbol will be represented by four entities: its dimension, a list of
elements and two dictionaries s and m. Instead of dictionaries, two-dimensional
arrays or arrays of arrays can be used, of course.

As an example, the Delaney symbol for the rectangle tiling shown in Figure 5
can be created as follows:

dimension = 2
elements = [’A’, ’B’]

s = {} # this creates an empty dictionary
S[O, A0] = TN S[O, ’B’] = 'B’
S[l,)A)])BJ; S[1,)B)] =)A;
3[2’ 7A;] = JA); 3[2’ 7B;] = B’

m = {}
m[0, ’A’] = m[0, 'B’] = 4
m[1, ’A’] = m[1, ’B’] = 4

Please note that additional information as, for example, vertex coordinates, can
be added easily. I will elaborate on extensions of Delaney symbols to present actual,
i.e., geometrically realized, tilings in a forthcoming paper.

The dimensions of Delaney symbols of interest are usually small, so we may treat
the dimension as constant.

Clearly, conditions (DS1) up to (DS4) are straightforward to test for. To check
whether condition (DS0) holds, any method to explore connected components of a
graph can be used. The following method proves useful for this and several other
purposes.

Algorithm 7 (Index priority depth-first traversal).

DATA STRUCTURES AND ALGORITHMS FOR TILINGS I 9

Input:
e A dictionary s, representing a Delaney graph.
e A list indices of valid indices, i.e., edge labels, for s.
e A list seeds of nodes of the Delaney graph.

Output: A spanning forest of the graph obtained by removing all edges with
labels not in indices, including only those components which contain an
element of seed. This forest is represented as a list of entries of the form
(i,C), where C is a node and i is either the special object None, in which
case C' is the root of a new component, or else an element of indices, in
which case it is the label of an edge from C towards the root of the current
component.

Method:
def index_priority_depth_first_traversal(s, indices, seeds):

seen = {}
result = []

for seed in seeds:
if not seen.has_key(seed):
result.append((None, seed))
seen[seed] = 1
stack = [seed]

while stack:
C = stack[-1]
del stack[-1]
for i in indices:
Ci = s[i, C]
if not seen.has_key(Ci):
result.append((i, Ci))
seen[Ci] = 1
stack.append(Ci)

return result

For a Delaney symbol of size n and m indices given, Algorithm 7 obviously
has time complexity n * m and space complexity n. For appropriate inputs, its
output can be analyzed in linear time to check connectivity or extract connected
components and subsymbols.

The index priority depth-first traversal can be used to construct a canonical
labelling for Delaney symbols. First, we must define a function compare (not shown
here) to compare two labelled symbols of the same size and dimension. This is
most easily done by converting the data for each symbol into a consecutive string
of numbers and comparing the results lexicographically. The particular choice of
comparison function is irrelevant here as long as it is used consistently. Following
is an algorithm to construct a canonical form:

Algorithm 8 (Canonical form).

Input: A Delaney symbol.

Output: A Delaney symbol in canonical form, with nodes labelled consec-
utively from 0. The algorithm produces identical output for isomorphic
Delaney symbols.

10 OLAF DELGADO-FRIEDRICHS

4

FIGURE 6. A continuous deformation between tilings.

Method:

def canonical_form(dimension, elements, s, m):
best_s = best_m = None
indices = range(dimension + 1)
n = len(elements)

for seed in elements:
edges = index_order_depth_first_traversal(s, indices, seed)
old2new = {}
new2o0ld = {}
for k in range(n):
(i, C) = edgesl[k]
old2new([C] = k
new2o0ld[k] C
s_new = {}
m_new = {}
for C_new in range(n):
C_old = new20ld[C_new]
for i in range(dimension + 1):
s_new[i, C_new] = old2newl[s[i, C_old]]
for i in range(dimension):
m_new[i, C_new] = m[i, C_old]
if (best_s is None or
compare(dimension, n, s_new, m_new, best_s, best_m) < 0):
best_s = s_new
best_m = m_new

return (dimension, range(n), best_s, best_m)

Clearly, Algorithm 8 has quadratic time and linear space complexity. For each
node, the symbol is relabelled in index priority depth-first order starting at that
node. Of all these numberings, the one leading to the best, i.e. smallest, labelled
symbol with respect to the compare function is chosen. Because all possible start-
ing nodes are used, the outcome does not depend on the inital labelling and the
canonical form is the same for isomorphic symbols.

As an example, we can now easily solve the question of whether the tilings shown
in Figure 1 are equivalent. It turns out that they are, and, indeed, Figure 6 indicates
that they can even be deformed continuously into one another.

Finally, consider the problem of finding the minimal image of a given n-di-
mensional Delaney symbol C. Let C' and D be two arbitrary elements of C.
Assume that there is some unknown Delaney map f which maps C' and D to a
common element C’. Then, by the Definitions, we must have m;(C) = m;(D)

DATA STRUCTURES AND ALGORITHMS FOR TILINGS I 11

for i € {0,...,n — 1} and, moreover, for i € {0,...,n}, s;(C) and s;(D) must be
mapped to the common element s;(C”"). By performing a parallel traversal of the
Delaney graph starting with the pair (C, D), we can partition C into equivalence
classes C,...,CF such that two elements in the same class must have the same
image under f. Moreover, if a contradiction appears during the traversal, we know
that there is no such Delaney map.

The following algorithm does the trick. To keep track of equivalence classes, it
uses a so-called union-find or partition data structure (cf. [Sed88]). We represent
this as an instance p of a class Partition with two methods union and find. The
find method returns a representative for the equivalence class its argument is in.
Initially, every item is in a class of its own. The union method unites the classes
of its two argument. In the code, a third method copy is used, which produces a
copy of the given structure. This is necessary because in Python, assignment of
complex objects produces a new reference, but does not copy the data. Partition
data structures are a well-known subject, so the code for the class Partition is
not shown. Note however, that it can be implemented as to require space O(n) and
accumulated running time O(m - a(n)) for any sequence of m > n find or union
operations on a total set of size n, where a is the inverse Ackermann function.

Algorithm 9 (Checking and propagating equivalence).

Input: A Delaney symbol, two elements C' and D and a partition.
Output: Nothing (None), if C' and D can not be set equivalent, else the par-

tition resulting from setting them equivalent and drawing all consequences.
Method:

def try_to_set_equivalent(dimension, elements, s, m, C, D, p):
for i in range(dimension):
if m[i,C] != m[i,D]:
return None
if p.find(C) == p.find(D):
return p

p = p.copyO)
p.union(C, D)
stack = [(C, D)]

while stack:
(C, D) = stack[-1]
del stack[-1]
for i in range(dimension+1):
Ci = s[i,C]
Di = s[i,D]
for j in range(dimension):
if m[j,Ci]l !'= m[j,Dil:
return None
A = p.£find(Ci)
B = p.find(Di)
if A != B:
p.union(A, B)
stack.append((Ci, Di))
return p

12 OLAF DELGADO-FRIEDRICHS

If Algorithm 9 returns a new partition, all the m-functions are constant on
classes and each s; maps the members of one class into the same “neighbor”-class.
Thus, the s; and m; can be defined classwise and the set of classes forms a Delaney
symbol.

By calling Algorithm 9 with C staying the same and D ranging through the
elements of C, every element that can have the same image as C' at all will eventually
be found. As above, the final collection of equivalence classes will form a Delaney
symbol Cy which will necessarily be minimal. To see this, note that a Delaney map
is one-to-one whenever there is an element in its image with a unique preimage.
Thus, if Cy were not minimal, it would have been possible to unite the class of C'
with some other class. Moreover, every image of C by a Delaney map f must map
onto Cy by the unique Delaney map which maps f(C) to the class of C.

Here is the code that constructs Cg:

Algorithm 10 (Minimal image).
Input: A Delaney symbol.
Output: The unique minimal image of the given Delaney symbol by a De-
laney map.
Method:
def minimal (dimension, elements, s, m):
p = Partition()
C = elements[0]
for D in elements:
q = try_to_set_equivalent(dimension, elements, s, m, C, D, p)
if q is not Nome:

P=4q
old2new = {}
new2o0ld = {}
k=0

for C in elements:
D = p.find(C)
if not old2new.has_key(D):
old2new([D] = k
new2o0ld[k] = D
k=k+1
0ld2new[C] = old2new[D]

s_new = {}
m_new = {}
for C_new in range(k):
C_old = new20ld[C_new]
for i in range(dimension + 1):
s_new[i, C_new] = old2new[s[i, C_old]]
for i in range(dimension):
m_new[i, C_new] = m[i, C_old]

return (dimension, range(k), s_new, m_new)

Clearly, Algorithm 9 performs at most n—1 union operations for a d-dimensional
Delaney symbol of size n. A pair of elements is pushed onto the stack only following
a union operation, so the total number of find operations is O(nd). The copy

DATA STRUCTURES AND ALGORITHMS FOR TILINGS I 13

operation clearly takes time O(n), while all other operations run in time O(nd),
thus the total running time of Algorithm 9 is O(nd - a(n)).

As Algorithm 9 is called n times in Algorithm 10 and everything else there runs
in time O(nd), we obtain a total running time of O(n?d - a(n)). Thus, for all
practical purposes, we may assume a quadratic time bound for Algorithm 10.

It would be interesting to know whether the construction of canonical forms or

minimal images or the test for minimality can be done in worst case running time
less than O(n?).

REFERENCES

[Bal90] L. Balke. Diskontinuierliche Gruppen als Automorphismengruppen von Pflasterungen.
Bonner mathematische Schriften, Bonn, Germany, 1990. (master thesis).

[Bea99] David Beazley. Python essential reference. New Riders, 1999.

[Cho80] W.W. Chow. Automatic generation of interlocking shapes. Computer Aided Design,
12:29-34, 1980.

[DDH*99] O. Delgado Friedrichs, A.W.M. Dress, D.H. Huson, J. Klinowski, and A.L. Mackay.
Systematic enumeration of crystalline networks. Nature, 400:644—647, 1999.

[DDS80] B.N. Delone, N.P. Dolbilin, and M.I. Stogrin. Combinatorial and metric theory of
planigons. Proc. of the Steklov Inst. of Math., 4:111-141, 1980.

[Del80] M.S. Delaney. Quasisymmetries of space group orbits. Match, 9:73-80, 1980.

[Del01] O. Delgado-Friedrichs. Recognition of flat orbifolds and the classification of tilings in
R3. Discrete and Computational Geometry, 26(4):549-571, 2001.

[DH8T7] A.W.M. Dress and D.H. Huson. On tilings of the plane. Geometriae Dedicata, 24:295—
310, 1987.

[Dre85| A.W.M. Dress. Regular polytopes and equivariant tessellations from a combinatorial
point of view. In Algebraic Topology, Gdttingen 1984, number 1172 in Lecture Notes
in Math., pages 56—72. Springer, Berlin, 1985.

[Dre87] A.W.M. Dress. Presentations of discrete groups, acting on simply connected manifolds.
Adv. in Math., 63:196-212, 1987.
[GS81] B. Griinbaum and G.C. Shephard. A hierarchy of classification methods for patterns.

Zeitschrift f. Kristallographie, 154:163—-187, 1981.

[GS87] B. Griinbaum and G.C. Shephard. Tilings and Patterns. W.H. Freeman and Company,
New York, 1987.

[Hee68] H. Heesch. Reguldres Parkettierungsproblem. Westdeutscher Verlag, Koln-Opladen,

1968.

[Hus89] D.H. Huson. Patches, Stripes and Net-Like Ttilings. PhD thesis, University of Bielefeld,
1989.

[Hus93] D.H. Huson. The generation and classification of tile-k-transitive tilings of the eu-
clidean plane, the sphere and the hyperbolic plane. Geometriae Dedicata, 47:269-296,
1993.

[MP94] E. Molnar and I. Prok. Classification of solid transitive simplex tilings in simply con-
nected 3-spaces. I. The combinatorial description by figures and tables, results in
spaces of constant curvature. In Intuitive geometry (Szeged, 1991), pages 311-362.
North-Holland, Amsterdam, 1994.

[MPS97] E. Molndr, I. Prok, and J. Szirmai. Classification of solid transitive simplex tilings
in simply connected 3-spaces. II. Metric realizations of the maximal simplex tilings.
Period. Math. Hungar., 35(1-2):47-94, 1997.

[Pyt00] Python language website. http://www.python.org, 2000.

[Sed88] R. Sedgewick. Algorithms. Addison-Wesley, Reading Mass., 1988.

[Vin93| E.B. Vinberg, editor. Geometry II: Spaces of Constant Curvature, volume 29 of En-
cyclopaedia of Mathematical Sciences. Springer Verlag, Berlin, 1993.

OLAF DELGADO-FRIEDRICHS, UNIVERSITAT BIELEFELD, FAKULTAT FUR MATHEMATIK, POST-
FACH 100131, 33501 BIELEFELD, GERMANY
E-mail address: delgado@mathematik.uni-bielefeld.de

